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Abstract

Background: Detailed connection maps of human and nonhuman brains are being generated with new
technologies, and graph metrics have been instrumental in understanding the general organizational features of
these structures. Neural networks appear to have small world properties: they have clustered regions, while
maintaining integrative features such as short average pathlengths.

Results: We captured the structural characteristics of clustered networks with short average pathlengths through
our own variable, System Difference (SD), which is computationally simple and calculable for larger graph
systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns
between any two nodes of a system. We calculated SD over large random samples of matrices and found that

high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of
degree distribution with high SD matrices maximizing entropic properties. Phi (®), an information theory metric
that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90%

correlate well with the SD metric.

distributions as related to small world properties.

distribution, Small world properties

of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of ® do not

Conclusions: The new network measure, SD, provides a link between high entropic structures and degree
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Background

The nervous system is an informational system on the
grandest scale: complex both in terms of its number
of components and its organization. To understand
how information is processed within it, physiologists
and modelers have traditionally examined the electrical
dynamics that directly convey information across the
components of the system (that is, firing patterns of
neurons or groups of neurons). With advancements in
imaging technology, more recent work has focused on
the structural properties of networks of neurons
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(the physical connections between neurons) that
underlie these functional dynamics. Several efforts are
underway to understand both structural and functional
connections of the brain and how that connectivity
influences informational flow and capacity. A group of
researchers, now collectively part of the Human Con-
nectome Project, has been creating connectivity maps
of model and human nervous systems and developing
tools to analyze their informational, structural and
functional properties [1-5].

The graph theory metrics used in these analyses are
based on the general properties of complex networks
(that is, nonrandom, nonlattice networks) [6]. Some
measures, such as degree, quantify the number of con-
nections or edges between nodes. More complex mea-
sures look at patterns of connections: whether all the
nodes of the system are closely connected or integrated
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(for example, path length - the minimum number of
edges between nodes); or whether some parts of the
graph might have clustered connections or hubs (for
example, clustering coefficient - a measure of how
related neighbors are in a graph). These metrics not
only provide a way of analyzing networks but also lay
the groundwork for understanding them. Based on
these models, metrics, and physical data of connect-
ivity in the brain, it has been proposed that neuro-
logical networks have small world properties, that is
they are a collection of interconnected hubs [7-10].
Small world characteristics are found in many real
world networks [11].

A different approach to understanding structure-
function relationships of neural networks is to use in-
formation theory to provide a theoretical framework
for identifying structures that integrate information
while allowing for the differentiation necessary for a
highly complex information capacity [12]. Tononi and
collaborators created a metric called Phi (®), a meas-
ure of the minimum effective information (EI). EI is a
directional measure of the causal influences between
subsets of a network, and thus the minimum EI
reflects a system’s capacity to integrate information
[13,14]. The ® measure, which was updated in 2008
and in 2011, moved the integrated information theory
closer to the goal of formalizing a theory of con-
sciousness based on the ability of a system to inte-
grate and process large amounts of information [15-
17]. Graphs that have been optimized for high ©
have been proposed to have small world properties
suggesting that the structures found within biological
neural networks would also have the ability to inte-
grate information. However, this finding needs to be
confirmed with the newer derivations of @ [13].
Much of the literature in this area of complexity and
consciousness focuses on a neural network having
properties of integration and differentiation that would
be apparent at both the structural and functional
levels of analysis [18].

It seems then that some common structural charac-
teristics may underlie complex neural networks: the
ability of each node to reach any other node (integra-
tion or connectedness), and a high degree of node
structure variance (specialization or differentiation).
Currently there is no direct measure of these proper-
ties. The small world properties of a system of nodes
are calculated from the ratio of the graph metrics for
clustering (a measure of intermodal connectivity) and
pathlength (a measure of the average distance between
nodes). The ratio is normalized with corresponding
values from a ‘random’ system [11]. This measure for
small worldness may or may not reflect the properties
of connectedness and specialization seen within real
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world systems. The goal of our work was to capture the
characteristics of connectedness and segregation in a
new variable that can be used to bridge the graph the-
ory measures and the information theory metrics for
larger nodal systems. Our new metric, System Differ-
ence (SD), is a Jaccardian measure of difference across
a system that reflects the degree distribution of a net-
work. We discuss this new measure in terms of its
mathematical properties and its predictive value for
structural properties based on other graph metrics,
and we compare our new measure to other measures
of complexity. When analyzing a population of ran-
domly generated nodes, high SD is predictive of
structures that are connected, but maintain some
clustering, much like those structures that have small-
world properties.

Results and discussion

Development of new variables

We considered a number of options for generating
variables that were computationally simple yet cap-
tured the properties of specialization and connected-
ness. Information theory, which uses entropy as a
basic means to understand the information flow
within a system, was first developed by Shannon in
1948 [19]. The application of this theory to networks
formalizes that idea that a system’s entropy quantifies
the number of possible states available to the system.
So we were looking for a metric that measured
specialization and connectedness, but also took into
account that systems with an intermediate density of
connections were likely to be the most complex in
terms of information states. We generated random
networks and examined the graph properties of vari-
ous metrics. We tested density, variables based on cycles,
number of reciprocal connections, and several modularity
measures derived from the igraph and other sources
[18,19]. Two newly defined measures best captured the
features of connectedness and specialization: Average
Connectedness (AC) and SD.

In analyzing networks, we can represent the network
as a graph with circles representing nodes (or neurons
in the case of the nervous system) and arrows repre-
senting directed edges or connections (Figure 1A). It is
easier to work computationally with a network system
represented as a matrix, A, where a nonzero entry
indicates a connection and where the columns repre-
sent inputs and the rows represent outputs
(Figure 1B). Our variable capturing connectedness,
(AC), was defined as the ability of a node to commu-
nicate information, either directly or through a
series of nodes, to any other node in the network
(See Figure 1C for a sample calculation). AC is the
average reachability of a system. To implement this
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nodes in the graph.

Figure 1 Calculations of System Difference and Average Connectedness in a graph. A) Representation of a directed, binary system in graph
form. (B) The same system's corresponding connection matrix where rows represent outputs and columns represent inputs. A nonzero value in
A;; indicates the presence of a connection from node i to node j, and a value of zero indicates no connection. (C) lllustration of the concept of
reachability. A node is reachable from another node if a path can be found between them. Node 4 can reach node 2 by passing through node 1.
Node 2 cannot reach node 4. Average Connectedness is the average node reachability of the graph (that is, the number of pairs of nodes A and
B - such that B is reachable from A - divided by the number of nodes). (D) The central calculation of System Difference (SD): non-overlap. When
comparing the output structure of node 1 to that of node 3, we must define sets representing each node’s outputs. Those sets can then be
compared to find the number of different entries (or non-overlap) between them. SD is the average non-overlap for all combinations of two
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The set of node 1’s outputs: (2)

The set of node 3’s outputs: (2,4)
The non-overlap between the sets: (4)

computationally, we created a matrix, R, of reachabil-
ities (using the transitive definition) where a zero in
position R;; indicates that node j is not reachable from
node i and a one in position R;; indicates that node
is reachable from node i. AC is the sum of the ele-
ments in the matrix divided by n? [20].

Our variable capturing specialization, (SD), quantifies
the average difference in connection patterns between
any two nodes of a network (see Figure 1D for a sam-
ple calculation). We represent each node’s inputs and
outputs as sets and apply a variant of Jaccardian dis-
tance to count the non-overlap in the input and output
sets between pairs of nodes. SD is the average non-
overlap in input structure plus the average non-overlap
in output structure.

Comparisons were made between the new measures,
AC and SD, using a small, randomly generated sam-
ple of weakly connected, directed matrices of 4 to 13
nodes. In generating these matrices, the probability of
a connection was 0.5, and there were no self-loops

(A;;=0). Isomorphs and non-weakly connected sys-
tems were excluded (see Methods). A weakly con-
nected, directed graph is a graph in which each node
can reach all other nodes if you were to treat direc-
ted connections as bidirectional or undirected. Based
on regression analysis at seven nodes, AC and SD
were highly correlated with each other - AC
accounted for over 80% of the variance in SD. Given
the correlation between these variables, we continued
forward with the SD metric.

SD was formulated to measure specialization in par-
ticular by quantifying the differences in connection
structure between the nodes in an unweighted, direc-
ted graph. One might expect that two neurons that
perform similar functions are more likely to be con-
nected to similar sets of neurons and likewise, two
neurons performing divergent functions are less likely to
be connected to similar sets of neurons. A simple way
to capture this dissimilarity of sets is through Jaccard
Distance. Jaccard Distance (shown in Equation 1) is the
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percentage of distinct elements that are not shared be-
tween two sets [21]:

A and B are sets and |X| is the size the set X

ANB
JaccardDistance(A,B) = 1 — | |
|AUB] (1)
~ |AUB| - |ANB|
N |A UB|

The numerator of the Jaccard Distance from Equation 2
calculates the number of distinct elements (the non-
overlap) in the sets A and B:

Nonoverlap(A,B) = |ANB| — |AUB]| (2)

Since SD is a measure of the average non-overlap be-
tween nodes in a system, it can be derived through
repeated application of Equation 2 to sets that represent
the connections in a graph. These sets can be quantified
as:

Out,isthe set of nodes that node x projects to
In,is the set of nodes that project to node x

SD is the average difference (or non-overlap) in the
sets and can be formalized as:

__non — overlap of outputs + non — overlap of inputs

SD -
number of comparisons

(3)

The non-overlap of the sets representing outputs
and inputs is obtained by summing the non-overlaps
over all distinct pairs of nodes in the graph. In order
to obtain an average difference, the number of non-
overlap must be divided by the number of distinct
comparisons. There are n/2 comparisons where 7 is
the number of nodes which can be simplified to the
denominator in Equation 4. By substituting Equation 2
into the numerator of Equation 3, the final SD formula
becomes:

SD =

(301>, ui1non — overlap(Out,, Outy)) + (3>, 1non — overlap(In,, Iny))
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One advantage of SD is that it is computationally sim-
ple. We calculated the computation times for SD with
increasing number of nodes from benchmark experi-
ments. SD can be calculated for a 15 node matrix in
0.0001 seconds and for a 1000 node matrix in under a
minute. The computationally fast measure SD can be
used to assess larger networks and therefore may be a
good measure for assessing biologically based networks
and other complex nodal systems.

Comparisons of System Difference with graph theory metrics
Using a large sample of random, directed networks (24,000
networks with 8 to 11 nodes), we looked at the relationship
of SD to a number of graph theory measures. Each matrix,
A, (of size n) was generated by creating n columns each
randomly filled with ¢ connections where c is a random
number from 1 to n-1 inclusive (¢ was the same for each
matrix). Self loops were eliminated by inserting zero on the
diagonal. This generation procedure produces matrices that
are both normalized and binary (see Methods for further
explanation). We used the igraph software package to gen-
erate the values of the graph metrics for the sample graphs
[22]. SD was plotted against the graph theory measures for
density, maximum degree, omega, number of motifs (of
sizes three and four), and average path length (each of
these measures are defined and discussed below). The
relationships between SD and each graph metric for 11
nodes were fitted with a polynomial regression, and the
second-degree fits are presented along with the individual
data points in Figure 2.

Density and degree are fundamental properties of a sys-
tem; density is the percentage of connections present in a
graph, and degree is the number of edges connected to a
node. In Figure 2A and B, we graphed SD against the
density and maximum degree of the graph (the maximum
of the sum of in- and out-degrees over all nodes). For
density and degree, SD shows an upside-down U-shaped
relationship. This trend suggests that SD shows entropic
properties over degree distribution (high and low degrees
yield low SD while median degrees yield high SD). As
described above, we would expect that a graph with no
connections (all nodes are independent) and a fully con-
nected graph (excessive information communication caus-
ing every node to carry the same information) would have
less complexity than matrices with an intermediate num-
ber of connections (a balance of information communica-
tion and distribution of information).

A clique is a subset of nodes in a graph that are fully
connected if you replace all the directed edges with

nx(n—1)
2

)
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(See figure on previous page.)

Figure 2 SD Plotted Against Graph Metrics. Each graph is generated by calculating System Difference and a graph metric in 24,000 random,
weakly connected, normalized networks (n=11). We sampled from graphs with degrees ranging from 1 to n-1, in steps of one such that the
normalized graphs would only have one weight value (see Methods: System Difference comparisons with graph theory metrics (Figure 2) and
2003 Phi. Comparisons with Graph Variables'). The lines plotted on the graphs are the best fits for the second-degree polynomials of SD. SD is
plotted against A) maximum degree, B) density, C) omega, D) average path length, E) motif number (size three) and F) motif number (size four).

bidirectional edges. A maximal clique is a clique that is
not contained within a larger clique. In order to get a
sense of modularity, we plotted SD against omega (the size
of the largest maximal clique) as shown in Figure 2C
[22,23]. Specialization and connectedness are reflected in
a balance between local, modular structures and more glo-
bal structures. SD appears to capture this trend -showing
omegas of approximately six at maximal SD indicating
some modular structure.

Average path length is the average geodesic distance
between two nodes in a graph (that is, the average num-
ber of edges that must be traversed to travel from one
node to another) [22]. Looking at Figure 2D, we can see
that SD shows a skewed upside-down U-shaped distribu-
tion against average path length. High SD appears to be
biased towards low average path length. A low average
path length indicates that the system has strong global
connections and so the distribution of values for average
pathlength suggests that SD might be an integrative
measure. Hub or modular structures with shorter path-
lengths are characteristics of small-world networks typ-
ical of biological systems [9].

Lastly, we looked at the presence of certain structural
motif metrics. A structural motif is a weakly connected,
directed graph of n nodes that serves as a building block
within a larger graph. Weak connectedness requires that a
motif have at least n-1 connections, and since self-loops are
excluded, a motif can have at most n*n connections. For
each size n, there are a fixed number of unique (non-iso-
morphic) motif classes. A graph can be analyzed to count
the number of times each of the motif classes (of size n)
occurs; this metric is called motif number [24,25]. In
Figure 2E and E, we plotted SD against motif number for
motifs of size three and size four respectively. High SD is
correlated with higher number of motifs (the curve shifts
to the right), which suggests that SD might be indicative of
clustering or hub structures within the larger system.

The data presented here suggest that high SD net-
works are biased towards shorter pathlengths and higher
clustering, structural properties associated with small
world properties.

SD =

(ZZ:1 ZZ:M Z?:ID (Auytv Abvt) ) + (22:1 ZZ:M ZZI:ID (At,a ) Anb) )

System Difference and degree
In all the analyses of SD, we observed a strong relationship
with the density or degree of the graph. The U-shaped
trend that SD shows against density becomes more pro-
nounced as the number of nodes is increased. In exploring
SD’s relationship to degree, we discovered that SD could
be expressed in terms of degree distribution.

A graph can be represented with a connectivity matrix
- a matrix A where Aj represents the connection from
node i to node j. In our unweighted graphs, A; will have
a value of one if node i has an output to node j or A;
will have a value zero if no such output exists. The set
theory formulation of SD (Equation 4) can be repre-
sented as pairwise comparisons within the connection
matrix where:

A is the comnection matrix and

_J1lifx#y
D) ={y 377

The difference function D(x, y) simply compares x and
y and returns a one if x and y have the same value and a
zero otherwise. The non-overlap functions from the nu-
merator of Equation 4 can be substituted with the differ-
ence function. The non-overlap in outputs between
nodes a and b can be calculated by comparing row a
and row b of A, and the non-overlap in inputs can be
calculated by comparing column a and column b:

Non — overlap(Out,, Out,) = ZD(AaJ»Ab,t) (5)

t=1

Non — overlap(In,, Iny) = D(Aa,t,Ab_t) (6)
=1

This substitution can be used in Equation 4 to arrive
at a derivation of SD in terms of A:

nx(n—1)
2
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The order of summation in the numerator of Equation 7
can be rearranged to show that the non-overlap of the
outputs is a computation that can be performed for each
column independently:

For any given ¢, the right hand side of Equation 8
represents the non-overlap in column t, which
amounts to the number of times that A,, and A,,
are not equal for each combination of a and b. This
can be found by multiplying the number of inputs in
the column by the number of locations where there
is no input. The number of inputs in a column ¢ is
the in-degree of node ¢:

in-degree(t) = Z Avy 9)
x=1

The number of locations where there is no input can
be found by subtracting the in-degree from #z (the num-
ber of nodes). Then the non-overlap in column ¢
becomes:

Z Z D(Ag:,Apys) = in-degree(t)* (n — in-degree(t))

a=1 b=a+1

(10)

A similar rearrangement shows that non-overlap of
the inputs can be found from each row independ-
ently. The end formula is the same except with out-
degree used instead of in-degree, where out-degree
is:

Out — degree(t) = ZAWC (11)
x=1

With substitutions for both the non-overlap in the inputs
and in the outputs, the SD calculation can be expressed
completely in terms of degree:

SD =

Sor (in-degree(t) x (n-in—degree(t)) + out-degree(t) x (n — out-degree(t)))
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System Difference and graph substructure

Our understanding of SD in terms of degree suggests that
the substructure of a graph should show certain trends with
respect to SD. Recall that cliques are subsets of nodes that
are fully connected in an undirected version of the graph, a
maximal clique is a clique that is not contained within a lar-
ger clique and omega is the size of the largest maximal
clique within a graph. For these experiments, a new set of
random, directed, and weakly connected matrices were
generated that sampled uniformly over density. Random
density was generated for each matrix by adding connec-
tions one at a time until the random density was reached
or just exceeded. Again, isomorphs, self-loops and non-
weakly connected systems were excluded (see Methods).
When SD, with a graph size of 50, is plotted against omega
(or average maximal clique size) the trend is U-shaped;
thus, structures with low SD either have a very small omega
or very large omega (Figure 3B, C). When SD is plotted
against the number of maximal cliques, the trend is more
complicated (Figure 3D). Larger numbers of maximal clus-
ters bias networks to higher values of SD, but low numbers
of maximal cliques span the whole range of SD values.
Structures with maximal SD have clique sizes of about 10
to 15. This means that in these high SD structures there are
groups of at least 10 nodes that are interconnected. In the
lowest SD structures, either all the nodes form one inter-
connected group or none of the nodes form a connected
subset. The combined results from the individual trends in
Figure 3B, C, D suggest that high SD networks tend to have
multiple large cliques suggestive of a modular structure.

A closer analysis of SD and motifs also gives us a bet-
ter understanding of graph substructure. Recall that motifs
are structural subunits that can be identified within a
graph. The distribution of SD plotted against different
motif metrics emphasizes that SD is a measure of degree
distribution. Four distinct trends among the 13 different
motifs classes are observed when comparing the frequency
of the motif structures (of size three) to SD, each of which
is related to the density of that group. Group 1 (Figure 4A)
contains all motif structures that have either two or four
connections (densities of 1/3 or 2/3 respectively, which
equally deviate from a density of 0.5). Group 2
(Figure 4B) contains all motif structures that have three
connections (density of 0.5). Group 3 (Figure 4C) has the
motif with five connections (density of 5/6). Finally,
group 4 (Figure 4D) has the motif with six connections
(density of 1). High SD structures are saturated in groups
1 and 2 while generally lacking in groups 3 and 4. Low SD
structures are generally lacking in groups 1 and 2 and ei-
ther saturated or deficient in groups 3 and 4.

nx(n—1)
2

(12)
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Figure 3 System Diffence plotted against density and clique graph metrics. Eachgraphisgenerated by calculating System Difference (SD)and
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The trend that motifs show is that a density of about
0.5 maximizes SD on a local, motif scale. The entropic
properties of SD vyield the symmetrical properties
observed when comparing over-connected and under-
connected structures. The local emphasis on density in
specific substructures then results in the motif number
trend observed (Figure 4E), which is a slightly skewed
version of the trend that overall density shows against SD

(Figure 3A). These results suggest that maximum SD is
obtained when the in-degree and out-degree for each
node are as close to n/2 as possible, and minimum SD is
obtained when the degrees are as far from n/2as.

The analysis of SD in terms of substructure can be taken
to the extreme of examining the contribution by individ-
ual nodes. If we temporarily assume that in-degree and
out-degree for each node can be set independently from



Hadley et al. Neural Systems & Circuits 2012, 2:7
http://www.neuralsystemsandcircuits.com/content/2/1/7

Page 9 of 15

A SD plotted against Motif 3

T T T T T T
0 2000 4000 6000 8000 10000

Motz

B SD plotted against Motif 6

S0

0 5000 10000 15000

Motits

c SD plotted against Motif 15 D

50 s pu e 6

SD plotted against Motif 16 E

SD plotted against MotifNumber

sD
60 80 100
L L

a0

20

100
L

80
1

so

Motif15

0 10000 20000 30000 40000 50000 60000

50000 100000

Motif16

150000

T T
50000 100000

Motifumber

T
150000

Figure 4 System Difference plotted against motifs. Each graph is generated by calculating System Difference (SD) and metric in 1,000
random, weakly connected networks (n = 100) sampled uniformly over density. A random density value was generated for each matrix by adding
conncetions one at a time until the random density was reached or just exceeded. (A-D) SD plotted against the number of occurences of
different motifs of size three. The number convention comes from igraph [22], so network graphs are displayed for clarity. The plots and network
graphs are grouped by the trend observed against SD. (E) SD plotted against the motif number for motifs of size three.

any other node, we can take the analysis of SD in sub-
structure to the extreme of a single node:

SD of node, = in-degree(t)
X (n—in-degree(t))
“+out-degree(t)
X (n—out-degree(t))

(13)

These results lead to a general strategy for hitting a
target SD by either moving in-degrees and/or out-

degrees away from or towards n/2. This strategy leads
to the insights of the nuances of the global trend of SD
and density. Random graphs with a density of 0.5 will
likely have a high SD value because in- and out-degree
will tend towards n/2. In contrast, a graph with a dens-
ity near 0.5, but with in-degree and out-degree distribu-
tions that differ greatly from n/2 will actually yield a
low SD.

In terms of the integrative measure of average path
length, SD generally follows a skewed upside-down
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U-shaped trend with the peak at a path length of 1.5
(Figure 5A). The graph shows a long tail as path
length increases because graphs are required to be
weakly connected. The section of the curve (to the
left side of the peak) represents the matrices with
densities of 1 to around 0.5. Networks that are fully
connected or near fully connected have path lengths
near 1, that is, every node is directly linked to nearly
every other node.

Density and average path length have a relationship
with a critical point (Figure 5B). With densities of 0 to
0.3, adding additional edges results in large, decreasing
gains in average path length. From 0.3 to 1, adding edges
results in much smaller (but constant) decreases in path
length. The critical point is around 0.3 density (which
corresponds to a path length of around 1.8) when the
critical gaps in network connectivity have all been filled
in. Although the maximal SD lands off this critical point,
structures around this critical point have high SD, repre-
senting a balance between density and path length.

The trends seen between SD and substructure/average
path length can be combined. The average path length for
the nodes within a clique should approach one since the
nodes are interconnected. Since high SD matrices with 50
nodes have maximal cliques around 15, at the very least
one third of the nodes are weakly connected, which would
likely generously decrease the average path length. The
path length would be lowered even more if there were
multiple maximal cliques that were linked together.

System Difference and other complexity measures

Our original inspiration in defining SD was the measure
of complexity originally developed by Tononi and colla-
borators, @ (here after referred to as 2003 @) [12,13].
2003 @ is a measure of the dynamic informational proper-
ties of a network; high 2003 @ strikes a balance between
the diversity of information states of a network and the
causal dependence between the nodes of the network [13].
2003 O is a measure of the integrative capacity of a set of
nodes. The causal interactions are captured by partition-
ing the set into two subsets, and then the entropy of firing
is measured in one subset while the other subset is stimu-
lated with maximal entropy of activity. This information
flow over a bipartition, the IE, is modified version of mu-
tual information that takes into account the direction of
information flow. The 2003 ® for a subset of system, S, is
defined as the bipartition of S such that EI is minimized.
(See Methods, 2003 Phi.) [13,14].

Several recent papers, however, have called into ques-
tion the calculation by which the 2003 ® was derived. EI
can be obtained from the covariance matrix of the net-
work, which represents all deviations from independence
among the nodes. In solving the linear equation repre-
senting the system dynamics, Tononi and colleagues
made an assumption that was disputed first by Barnett
et al. (2009) [26]. Various corrected versions of @ have
been offered most recently by Barrett and Seth in 2011
[16]. The extended version of ® proposed by Barrett and
Seth (referred to here after as @ Empirical) calculates
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information based on an empirical, stationary distribu-
tion (see Methods, Phi Empirical). The approach of Bar-
rett and Seth is based on taking the stationary firing of a
system and calculating information integration of transi-
tions from one state to another that is separated by
some time lag, . ® Empirical (given a particular T) is
the amount of information integration generated by the
current state about the state t time-steps in the past. It
can be calculated either by observing a sufficient num-
ber of firing states or though an analytical formula [16].

We first assessed the relationship between SD and the
2003 @ proposed by Tononi and collaborators. The
matrices used were the same as those used to generate
Figure 2 (24,000 random, directed networks with 8 to 11
nodes). In order to calculate 2003 @, all matrices must
be normalized according the following equation (where
A is the connectivity matrix before normalization and C
is the normalized connectivity matrix):

Ay

—_— 14
Sum of column (14)

C,7=k><< >where k<1

As stated previously, each matrix A (of size n) was gen-
erated by creating n columns each randomly filled with ¢
connections where ¢ is a random number from 1 to n-1
inclusive (c was the same for each graph). We chose k to
be 0.5, and thus each the connection weight was 0.5/c.
This procedure enforces normalization (such that C=A)
while keeping each matrix to only one weight value (in
addition to the absence of a weight, that is, zero). SD is
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calculated by treating the matrix as if it is unweighted and
hence, normalization does not change the value of SD.
After generating these matrices and the values associated
with them, we linearly regressed SD against 2003 @. The
correlation values for the comparisons were 0.667 (n=8),
0.804 (n=9), 0.871 (n=10), and 0.9140 (n=11). Using
various procedures for generating random networks, we
consistently find the same level of correlation and the
same trend that correlation increases with increasing
number of nodes (data not shown). While the pattern
of correlation is consistently strong across multiple
experiments, the correlation is based on the general trends
of 2003 ® and SD rather than a point-by-point corres-
pondence. Using the same set of matrices described above,
we compared the 2003 @ with the same graph metrics
used in our analysis of SD. The 2003 ® and SD appear to
measure similar structural features of networks (trends in
graphs of 2003 @ plotted against the same graph metrics
in Figure 2 closely match the trends SD shows in that
figure), with one of the most notable shared features being
a U-shaped distribution over density (data not shown).
We also generated random matrices to compare SD,
2003 ® and ® Empirical using the same procedure for
matrix generation and normalization described above that
is, generating matrices such that C = A). We looked at cor-
relations between these three measures and density. 2003
@ and @ Empirical differ in their trend over density. While
2003 @ and SD share the entropic U-shaped distribution
over density, ® Empirical shows a less clear trend and does
not correlate well with SD (Figure 6B). It appears that the
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Figure 6 Phi Empirical. The graphs are generated by calculating ® Empirical, System Difference and density in 5,000 random, weakly connected,
normalized networks (n=9) sampled uniformly over density such that the normalized graphs would only have one weight value (see Methods,
System Difference and Phi Empirical). (A) ® Empirical plotted against SD. (B) ® Empirical plotted against density. ® Empirical has a time lag
parameter over which to calculate information integration. The results above are typical for all time lags attempted (one to four as well as the
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highest ® Empirical values are found in very low density
networks. Consequentially, ® Empirical does not correlate
well with SD (Figure 6A). While it is clear that the calcula-
tion of 2003 @ is flawed, the characteristics of @ Empirical
need to be further examined to assess whether it captures
structural features associated with small world properties
or the expectations associated with information theory.

Conclusions

Degree distribution has always been recognized as an
important aspect of structural characteristics of systems.
Different defined types of systems (small world, scale
free, modular) have distinctive degree distributions char-
acteristics [3,27]. The neural complexity measure from
which the original 2003 ® was derived is heavily
dependent on degree [28]. Many papers in the field define
degree distributions as a probability function: the distribu-
tion is defined as the probability that a selected node has
degree k [19,29]. The degree distribution of a system then
represents the cumulative degree distribution as the prob-
ability over all nodes. The advantage SD offers over this
method is that it specifically defines an entropic degree
distribution where over-connected and under-connected
distributions yield low SD and median connectivity results
in high SD. We have not encountered a graph measure
that links entropy and degree distribution.

SD then is a measure of entropic degree distribution
and could be used to look for these specific features
within graphs. It is possible and likely that a major deter-
minant of neural complexity is degree distribution. It
may be that a degree distribution that balances a set of
constraints to produce a system that is both segregated
and connected has a simple solution n/2, the optimal de-
gree for complexity, as can be seen from our analysis of
the graph measures in the context of optimum SD de-
gree distribution. This combination of local and network
degree optimums pushes local structures towards cli-
ques, hubs or clusters with particular motif patterns and
short path lengths. This makes sense from a biological
perspective as well. We know from empirical evidence
that the brain is modular and that it probably evolved as
a series of subunits that were organized into the mas-
sively parallel system. Modules that met local degree
optimum were hooked together in such a way as to create
optimums at a higher level of the network hierarchy. So it
makes sense that we would see this degree distribution at
multiple levels of structure. As is so often in nature, the
solution is elegant.

Methods

Matrix generation algorithms and experimental analysis
The generation algorithms for each experiment differed
slightly. All experiments used directed, weakly connected
graphs with no self-loops.
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Development of the variables Average Connectedness and
System Difference (no figure shown)

For each matrix that was generated, each connection had a
50% chance of being assigned a value of 0.5 and a 50%
chance of being assigned a value of zero Self-loops, iso-
morphs and non-weakly connected systems (defined below
in the section "Detection"”) were excluded. We collected
datasets for networks of sizes 4 through 13 with sample size
from 215 (n=4) and 1,000 (n=13). We performed expo-
nential fits of AC on SD for each n using Microsoft Excel.

System Difference comparisons with graph theory metrics
(Figure 2) and 2003 Phi

We generated a single set of matrices that could be used
to make comparisons between SD, 2003 @ and a set of
graph theory matrices. In order to calculate @, matrices
must be normalized. However, normalization does not
affect the calculation of SD, which only takes into account
whether nodes are connected or not. The matrices in
these trials were generated according to our normalization
procedure described in [13] and in more detail below. For
each matrix that was generated, the number of weights
per column was a random number between 1 and n-1 in-
clusive. n columns were created with n-1 elements (con-
sisting of ones and zeros in random order). A main
diagonal of zeros was inserted to form an n by n matrix
with no self-loops. This procedure ensured that each
matrix would only have one weight value (in addition to
the absence of a weight, that is, zero). We collected data-
sets for networks of sizes 8 through 11 with a sample size
of 24,000 for each n. For each network size, we calculated
SD and 2003 @ for each matrix as well as a selection of
graph theory metrics (from igraph) [22]. We performed
linear correlation of 2003 @ on SD using the R statistics
package [29]. We plotted SD and the graph theory metrics
with second-degree polynomial model fits (Figure 2), and
we also compared 2003 @ to these same metrics (data not
shown). Plots were generated in the R package [30]

System Difference time benchmarks

Randomly generated matrices for multiple node sizes were
sampled. SD was calculated and the time to calculate was
averaged over several sample sizes. These experiments
were carried out on a set of identical rack mounted com-
puter systems. Each system had two AMD Dual Core
Opteron 275 processors with 8 GB of RAM.

System Difference and subgraph analysis (Figures 3, 4

and 5)

The matrices in these trials were generated to sample uni-
formly over density. A random density was generated for
each matrix and connections were added one at a time
until the random density was reached or exceeded. No
normalization was applied. The graph theory metrics were
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calculated through igraph [22]. For motif metrics, 100-node
networks were generated with a sample size of 1,000. For
density, omega, average maximal clique size, number of
maximal cliques and path length, 50-node networks were
generated using a sample size of 1,000. Plots were gener-
ated in the R package [30].

System Difference and Phi Empirical (Figure 6)

The same matrix generation procedure was used as in the
2003 ® comparisons with SD. In this case, 5000 nine-node
systems were generated and then ® Empirical, SD and
density were calculated. Time lags of one ,two, three and
four were used for @ Empirical. We also calculated the
sum of the ® Empirical values over those time lags (see @
Empirical below). The output was plotted using the R pack-
age [30].

Detection

During generation of networks for any experiment, each
newly generated network was checked against all previous
networks generated in the experiment using the algorithms
below. Networks that faiedl to pass the algorithms were dis-
carded and a new random network was generated.

Isomorph detection

Two systems are isomorphic if a relabeling of the verti-
ces of one system yields a copy of the other system. Iso-
morphs were avoided through igraph’s implementation
of the VF2 algorithm for isomorph detection [22].

Weakly connected

A weakly connected, directed graph is a graph in which
each node has an undirected path to each other node.
Weak connectivity was checked using igraph’s connectivity
detection implementation [22].

Self-loop

A loop (or self-loop) is a connection from a vertex onto
itself. Loops were excluded by generating (n-1) by n
matrices and then inserting a main diagonal of zero to
form n by n matrices.

Normalization

In calculating @, a normalization procedure was used to
separate out the effects of weight magnitude from the
effects of structure [13]. Their normalization takes a
connection matrix A and generates C, the normalized
connectivity matrix:

Ay
—— ) where k<1
Sum of column;

C,-_j:k><<

In order to preserve this normalization while keeping
each matrix to only one weight value (in addition to the

Page 13 of 15

absence of a weight, that is, zero), we had to make the
sum of the column j the same value for all j. By holding
the number of weights per column, c, to a constant for
all columns in a matrix, the resulting matrix is both nor-
malized and binary. Since we chose k to be 0.5 (follow-
ing the 2003 @ protocol), each connection weight was
0.5/c. This procedure ensures that C = A. We applied
the normalization procedure to all matrices in all experi-
ments in which ® was calculated.

2003 Phi
2003 @ is a measure of the information capacity of a
system based on the casual interactions within the sys-

tem [13]. ®(A) is the @ of a subset, S, of a stationary
system, X , whose connection matrix is specified by

CON(X). A stationary system is one in which mean and
variance firing do not change over time. The activity

vector, F , represents the activity of each of the elements
of X. The activity is governed by the following dynamics

(when R is uncorrelated Gaussian noise with zero mean
and unit variance and c is a constant):

F=FCON(X) +cR

The casual interactions of S are captured by EI, where

EI for a bipartition of S into A and B is given by the fol-
lowing equations:

EI(A~B) =EI(A — B) + EI(B — A)
EI(A — B) = M1(A"™ : B)

MI(A:B) =H(A) + H(B) — H(A,B)
H(A) = % In[(2 x 7 x e)" det( cov(A))]

~H ~
where MI is mutual information, A" is a system A
where each element is substituted with independent

noise sources of constrained maximum variance, H(A) is
entropy of system A, H(A,B) is the joint entropy of sys-
tems A and B, det(C) is the determinant of matrix C, and
cov(A) is the covariance respectively of system A. D(S)
system in A and B such that the EI (A <—>B) is minimized:

for whichEI(A<—B)
s min{H™m(A), H™x(B)}

MIB(S) = [A; B]
= minfor all A in §

where MIB is the minimum information bipartition,
[A; B] is a bipartition of § into A and B, H™(A) is the
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maximum entropy available to A, and min{...} is the
minimum. Then the ® for subset S is given as:

2003 @(S) = EI(MIB(S))

For our analyses, we considered the subset of X with
the greatest @ to define the information capacity for X.

Tononi et al. derived an analytical solution for finding
the covariance of a system under stationary conditions [12].
Barnett et al. show the derivation to be erroneous (see [26]
for a full description).

MATLAB code for the 2003 @ (with the erroneous
analytical solutions) is available from http://tononi.
psychiatry.wisc.edu/informationintegration/toolbox.html
[13]. We used the code as implemented with noise para-
meters ¢, =1 and ¢;=0.00001. These two values consti-
tute the magnitude of noise from the first equation.

When calculating EI (A — B), ¢p is the magnitude of the
perturbation noise applied to subset A while ¢ is the

magnitude of the intrinsic noise applied to subset B. Put-
ting this in the context of the first equation (given a sys-

tem X bipartitioned into A and B
F=FCON(X) + C*R
where * is element-wise multiplication of vectors, and

C is a column vector of size n (the number of elements
in X) such that:

O)

B { cpif element j is contained in subset A
! ciif element j is contained in subset B

From the above equations describing the dynamics of
the system X, the 2003 @ code uses an erroneous analyt-
ical solution to find EI. Thus the code takes noise para-
meters c, and ¢; as well as the connection matrix, CON(
X), and returns a value for 2003 ®. CON(X) represents
the normalized connection matrix which is alternatively
noted in the body of our paper as C. CON(X) (or C) is
thus a matrix representing the strength of the weighted
connections between elements of a system X . In the
context of 2003 @, these weights are applied to a system
with linear dynamics.

Phi Empirical

Given a general stationary Gaussian system, X, the genera-

tive model is: Xt = A1 X, +A2)A(t,2 + e +AP)A(¢,,, + Et
where A; is the generalized connectivity matrix act-

ing at different times and E, is a stationary, Gaussian
noise with zero mean and vanishing auto-covariance

(cov(Et_T,Et) =0 when 7 # 0). Much like the above
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2003 ® model, ® Empirical is defined as the EI over the
MIB. The EI with any time lag, 1, is given by the following
equations (equations 0.33 and 0.34 from [16]):

A L det( cov (X
E[(X; T, {M , M }) :%log det(cto(v(j(tor(’))%t))

det( cov (Mk) )

)

k
t—1

2 ! 1 g
(0}
l(:l2

det ( cov (M

with a normalization factor K:

K({M17 Mz}) = % log miny

{ o)l deecon ")) |

where M' and M’ are bipartitions of X; det(C) is the co-
variance of a matrix C, and cov(M) is the covariance of a
system M. The MIB for a given X is defined as:

. A1 a2
MIB(R) =[S for WhiChEI(X; v (M, M}

()

Then @ Empirical is defined as the unnormalized EI
over the MIB.

@ Empirical can be calculated analytically for sys-
tem X. MATLAB code is available from http://www.
ploscompbiol.org/article/fetchSingleRepresentation.action?
uri = info:doi/10.1371/journal.pcbi.10011052.s001 [16]. In
our experiment, the noise, E +, was a Gaussian distribution
with a mean of zero and a variance of one. P was set to
one (for the generative equation) and thus the equation
for activity of system X at time t is )A(t :Al)A(t,l +Et
This is the same formula governing the 2003 ® dynamics,
F = FCON (X ) +C*R. Hence, the connection matrices
from our paper, C, are represented as A; in @ Empirical
notation (and CON(X) in 2003 @ notation).

We calculated ®(X) for T=1{1,2,3,4}. In addition we
also performed an experiment using the value of

> O(X).

= min for all Ml in X
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